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1 Introduction

Traditionally, calculus deals with integer orders of derivatives and integrals. However, the
curiosity about what would happen if we extended this concept to non-integer or fractional
orders led to the development of fractional calculus. This seemingly simple question opened up
a rich and important new area of mathematical theory with applications in various fields such as
chemistry, physics, mathematical biology, fractal media, electromagnetic, statistical mechanics,
and many other fields. For almost 300 years, researchers have delved into and expanded the
field of fractional calculus. Initially confined to pure mathematics for over two centuries, recent
decades have seen its recognition and utilization analytically and numerically in various natural
contexts and practical applications. For instance, Chaurasia et al. (2012), Manafian et al. (2015),
Povstenko (2014); Klekot et al. (2016), Salim et al. (2009); Velieva & Agamalieva (2017), Stern
et al. (2014) and Yusubov (2015) studied the existence of analytical solution of fractional
differential equations. Meanwhile, others used various numerical methods, such as Li et al.
(2009) and Meerschaert et al. (2004) used the finite difference method, Hejazi et al. (2013) and
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Zhuang et al. (2014) used the finite volume method, Li et al. (2009), Li et al. (2009) and Zheng
et al. (2015) used the finite element method and Shahriari et al. (2020) used spectral method
and presented a computational algorithm to solve the one dimensional fractional Dirac operator.

This sparked the curiosity of mathematicians, who began exploring the possibilities of chang-
ing orders, kernels, and neighborhoods based on their understanding of ordinary integral and dif-
ferential operators. Since fractional derivatives possess fewer properties, mathematicians worked
on introducing various fractional derivatives to overcome limitations and challenges. Examples
of these derivatives include Riemann-Liouville, Grunwald-Letnikov, and Erdelyi-Kober, among
others. Some of these derivatives have proven to be powerful tools in exploring the complex
dynamics of real-world phenomena and introducing fractional order operators into disciplines
like physics, chemistry, engineering, biology, and medicine. However, other definitions are less
utilized and still await further exploration.One notable derivative was introduced by Caputo in
1967, who reformulated the definition of the Riemann-Liouville fractional derivative by swap-
ping the order of the ordinary derivative with the fractional integral operator to create his new
definition. While it may not be effective for non-integer order derivatives, Caputo’s derivative is
particularly useful in solving fractional differential equations, especially since it doesn’t require
fractional order initial conditions. These equations arise in various scientific and engineering
applications, such as viscoelasticity, diffusion, and control systems. Caputo et al. (2015) further
improved this derivative by changing its kernel to an exponential one to overcome its singular-
ity. This derivative garnered significant interest due to its dual representations of temporal and
spatial variables, as well as the absence of a singular kernel. Below, we highlight some works
that show the elegance and utility of this derivative. Losada et al. (2015) defined the fractional
integral corresponding to this fractional order derivative. Nieto et al. (2015) presented a nu-
merical solution of the RLC circuit model which uses the fractional order derivative without a
singular kernel. Atangana (2016) presented some useful and interesting tools about the defini-
tion and applied them back to the nonlinear reaction-diffusion of the Fisher equation. Gómez et
al. (2016) presented another alternative representation of the diffusion and diffusion-advection
equations using the definition of the Caputo and Fabrizio to approximate the spatial and time
derivatives. Alqahtani et al. (2016) proposed a numerical approximation for the space-time
of Caputo-Fabrizio fractional order derivative and applied it to the equation of groundwater
pollution. Cheng et al. (2017) used it to solve the equation of fractional Cattaneo based on
this fractional order derivative present a second-order Crank-Nicklson scheme, and Liu et al.
(2018) proposed a second-order finite difference scheme to solve the quasilinear time parabolic
equation with Caputo-Fabrizio fractional order. Can et al. (2020) and Jafari et al. (2023) give
recently novel numerical methods for solving special fuzzy and non-linear fractional differential
equations with various kernels. Nevertheless, to our best knowledge, finite element methods for
solving partial differential equations with fractional order derivatives based on this fractional
order derivative have not been reported yet.

Boutiba et al. (2022) assumed in two different representations for the temporal and the
spatial variables to solve the time fractional partial differential equations, based on the Riemann-
Liouville fractional derivative giving stability and convergence order of the finite element method
and proving that the semi-discretization is unconditionally stable. And Boutiba et al. (2023)
solved the fractional space-time diffusion equation over finite fields by replacing the first temporal
derivative with the Caputo-Fabrizio fractional derivative and the second spatial derivative with
the Riemann-Liouville fractional derivative.

In this paper, we extend previous results involving Caputo and Fabrizio’s time-fractional
derivative presuming two different representations for the temporal and spatial variables with
the Laplacian operator to solve the time-fractional diffusion equation with non-homogenous
initial and limit conditions using finite difference and element schemes to establish stability and
convergence order of the method.
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In this paper, we consider the following fractional time diffusion equation
CF
0 D

γ
t U(x, t)−∆U(x, t) = f(x, t), (x, t) ∈ [a, b]× [0, T ] ,

U(x, 0) = ψ(x), x ∈ [a, b] = Ω,
U(a, t) = Ua(t), U(b, t) = Ub(t), t ∈ [0, T ] = I,

(1)

where b > a > 0; T > 0; f : Ω× I → R; ψ : Ω→ R; Ua,Ub : I → R are given functions; ∆ is the
Laplacian operator and CF

0 D
γ
t U(x, t) is the Caputo-Fabrizio fractional order derivative given by

Caputo et al. (2015) and Losada et al. (2015) for 0 < γ < 1,

CF
0 D

γ
t U(x, t) =

1

1− γ

∫ t

a

∂U(x, ξ)

∂ξ
e

[
−γ
t− ξ
1− γ

]
dξ. (2)

Our goal is to introduce a finite element method for solving this fractional time diffusion
equation. We’ll establish unconditionally stable results and derive some a priori estimates. This
work contains four sections. In Section 2, we discuss the time discretization of the problem (1),
examine the existence and uniqueness of a weak solution, investigate its unconditional stability,
and provide error estimates for the semi-discrete scheme. In Section 3, we present the fully
discrete scheme used and carry out error estimates for the problem (1). Finally in Section 4, we
provide a numerical example to validate our theoretical findings.

2 Time discretization

In this section, we present the semi-discrete variational form of the fractional time diffusion
equation. We then discuss the existence and uniqueness of the solution, followed by stability
and convergence analysis.

2.1 Finite difference scheme

First, to approximate the fractional time derivative, we need to discretize the space-time as

tj = j∆t, j = 0, 1, · · · , J where ∆t =
T

J
is the time step. Hence the Caputo et al. (2015)

fractional time derivative (2) is estimated as follows,

CF
0 D

γ
t U(x, tj+1) =

1

1− γ

∫ tj+1

0

∂U(x, ξ)

∂ξ
e

[
−γ
tj+1 − ξ

1− γ

]
dξ

=
1

1− γ

j∑
k=0

∫ tk+1

tk

∂U(x, ξ)

∂ξ
e

[
−γ
tj+1 − ξ

1− γ

]
dξ. (3)

Since,
∂U(x, ξ)

∂ξ
=
U(x, tk+1)− U(x, tk)

∆t
+ (ξ − tk)Utt(x, ck)

with ck ∈ (tk, tk+1). Then, using (3), the Caputo-Fabrizio fractional time derivative becomes
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CF
0 D

γ
t U(x, tj+1) =

=
1

1− γ

j∑
k=0

∫ tk+1

tk

[
U(x, tk+1)− U(x, tk)

∆t
+ (ξ − tk)Utt(x, ck)

]
e

[
−γ
tj+1 − ξ

1− γ

]
dξ,

=
1

1− γ

j∑
k=0

U(x, tj−k+1)− U(x, tj−k)

∆t

∫ tk+1

tk

e

[
−γ

ξ

1− γ

]
dξ + E∆t,

=
1

γ

j∑
k=0

U(x, tj+1−k)− U(x, tj−k)

∆t

e
[
−γ

tk
1− γ

]
− e

[
−γ

tk+1

1− γ

]+ E∆t.

Then,

CF
0 D

γ
t U(x, tj+1) =

1

γ

j∑
k=0

MkUt(x, tj−k+1) + E∆t, (4)

where  Mk = e

[
−γ

k∆t

1− γ

]
− e

−γ (k + 1)∆t

1− γ


,

Ut(x, tj−k+1) =
U(x, tj−k+1)− U(x, tj−k)

∆t
,

(5)

and E∆t is the truncation error given by

E∆t = CF
0 D

γ
t U(x, tj+1)− 1

γ

j∑
k=0

MkUt(x, tj−k+1), (6)

=
1

1− γ

j∑
0

∫ tk+1

tk

(ξ − tk)Utt(x, ck)e

[
−γ
tj+1 − ξ

1− γ

]
dξ. (7)

Suppose that U(t) ∈ C2 ([0, tk];R), then we have

|E∆t| ≤ CU ,γ(∆t)2,

such that

CU ,γ =
1

γ
max

1≤k≤j+1
‖Utt(x, ck)‖ e

[
2γ

1− γ

]
.

Now, for the brevity’s sake, we set

Qγt U(x, tj+1) =
1

γ

j∑
k=0

MkUt(x, tj−k+1).

Consequently, (3) leads to

CF
0 D

γ
t U(x, tj+1) = Qγt U(x, tj+1) + E∆t.

Then, we will use Qγt (x, tj+1) as an approximation of the time Caputo-Fabrizio fractional
order derivative which leads us to the next finite difference scheme of the problem (1),

Qγt U j+1 −∆U j+1 = f j+1, j = 0, 1, · · · , J − 1.
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After some adjustment, we obtain the following scheme

U j+1 − r∆U j+1 =

j∑
k=0

Nj,kUk + rf j+1,

in which r =
γ∆t

M0
and

M0.Nj,k =

{
Mj , k = 0,
Mj−k −Mj−k+1, 1 ≤ k ≤ j.

2.2 Existence and uniqueness of the variational solution

Our goal is to introduce the variational formulation of problem (1) and derive the existence
and uniqueness of the solution, we need to define the next functional spaces with their norms

H1(Ω) =

{
w ∈ L2(Ω),

dw

dx
∈ L2(Ω)

}
,

H1
0 (Ω) =

{
w ∈ H1(Ω), w(a) = w(b) = 0

}
,

Hm(Ω) =

{
w ∈ L2(Ω),

dkw

dxk
∈ L2(Ω) for all positive integer k ≤ m

}
,

where L2(Ω) is the space of all measurable functions whose square is Lebesgue integral in Ω.
The L2 and H1 inner product are defined respectively by

(U , w) =

∫
Ω
UWdx, (U ,W)1 = (U ,W) + (

dU
dx
,
dW
dx

)

and their corresponding norms,

‖W‖0 = (W,W)1/2, ‖W‖1 = (W,W)
1/2
1 .

Define the norm of the space Hm(Ω) by,

‖W‖m =

(
m∑
k=0

∥∥∥∥dkWdxk
∥∥∥∥2

0

)1/2

.

Instead of using the standard H1 norm, we are going to use the following norm

‖W‖1 =

(
‖W‖20 + b

∥∥∥∥dUdx
∥∥∥∥2

0

)1/2

.

Problem (1) transformed into a semi-discrete variational problem which is given as
Find U j+1 ∈ H1

0 (Ω) for j = 0, 1, · · · , J − 1, where U j+1(x) is an approximation of U(x, tj+1)
such that (

U j+1,W
)

+ r

(
∂U j+1

∂x
,
∂W
∂x

)
=

j∑
k=0

(
Nj,kUk,W

)
+ r

(
f j+1,W

)
. (8)

We denote

B
(
U j+1,W

)
=
(
U j+1,W

)
+ r

(
∂U j+1

∂x
,
∂W
∂x

)
and

f1 =

j∑
k=0

Nj,kUk + rf j+1, F(W) = (f1,W).

Then, we get the variational form in its concise form as

B
(
U j+1,W

)
= F(W).
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Theorem 1. For 0 < γ < 1, and a sufficiently small step size ∆t, there exists a unique solution
U j+1 that satisfy (8). Furthermore, U j+1 satisfy∥∥U j+1

∥∥
1
≤ C ‖f1‖−1 .

The existence and the uniqueness of the variational solution are assured by the very well-
known Lax-Milgram Lemma. It consists to prove that the bilinear form B is coercive over H1

0 (Ω),
its continuity over H1

0 (Ω)×H1
0 (Ω), and the continuity of the linear form F .

Proof. 1. The coercivity,

B(U j+1,U j+1) =
(
U j+1,U j+1

)
+ r

(
∂U j+1

∂x
,
∂U j+1

∂x

)
≥

∥∥U j+1
∥∥2

0
+ r

∥∥∥∥∂U j+1

∂x

∥∥∥∥2

0

≥
∥∥U j+1

∥∥2

1
.

2. The continuity,

B
(
U j+1,W

)
=

(
U j+1,W

)
+ r

(
∂U j+1

∂x
,
∂W
∂x

)
≤

∥∥U j+1
∥∥

0
‖W‖0 + r

∥∥∥∥∂U j+1

∂x

∥∥∥∥
0

∥∥∥∥∂W∂x
∥∥∥∥

0

≤
∥∥U j+1

∥∥
1
‖W‖1 .

Moreover, we can prove that the linear form F(.) is continuous over H1
0 (Ω) since

f1 ∈ H1
0 (Ω) ⊂ H−1(Ω). Then, we have that

|F(W)| = ‖f1(W)‖ = ‖f1‖−1 . ‖W‖1

that achieves the proof.

For convenience and without loss of generality, we consider f ≡ 0 in what follows.

2.3 Stability analysis and error estimate

Lemma 1. Semi-discrete form (8) is unconditionally stable for a sufficiently small step size ∆t
and ∥∥U j+1

∥∥
1
≤
∥∥U0

∥∥
0
, for j = 0, · · · , J − 1.

Proof. We will use inductions to prove the result. First for j = 0 in (8), we have

(
U1,W

)
+ r

(
∂U1

∂x
,
∂x

∂x

)
=
(
U0,W

)
, W ∈ H1

0 (Ω).

Taking W = U1, we obtain ∥∥U1
∥∥

1
≤
∥∥U0

∥∥
0
.

Now, we suppose that ∥∥∥Uk∥∥∥
1
≤
∥∥U0

∥∥
0

for k = 0, · · · , j. (9)

We need to prove that ∥∥U j+1
∥∥

1
≤
∥∥U0

∥∥
0
.
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Taking W = U j+1 in (8),

(
U j+1,U j+1

)
+ r

(
∂U j+1

∂x
,
∂U j+1

∂x

)
=

j∑
k=0

Nj,k
(
Uk,U j+1

)
.

Using (9), we get

∥∥U j+1
∥∥2

1
≤

j∑
k=0

Nj,k
∥∥∥Uk∥∥∥

0

∥∥U j+1
∥∥

0
,

≤
j∑

k=0

Nj,k
∥∥U0

∥∥
0

∥∥U j+1
∥∥

0
,

≤
∥∥U0

∥∥
0

∥∥U j+1
∥∥

1
.

Finally, we have ∥∥U j+1
∥∥

1
≤
∥∥U0

∥∥
0
.

Theorem 2. Assume that (1) has a unique solution U(tj+1) at t = tj+1 and U j+1, j = 0, · · · ,
J − 1, is the solution of this semi-discrete form in (8) with the initial condition. Then, we have
the next error estimate for 0 < γ < 1∥∥U(tj+1)− U j+1

∥∥
1
≤ C∆t2 , j = 0, · · · , J − 1.

Proof. First denote the error εj+1 = U(tj+1)−U j+1 at t = tj+1 for j = 0, · · · , J − 1. The exact
solution U(tj+1) satisfy the semi-discrete form (8), then we have

(U(tj+1),W) + r

(
∂U(tj+1)

∂x
,
∂W
∂x

)
=

j∑
k=0

Nj,k (U(tk),W)− r(E∆t,W). (10)

Subtracting (8) from (10), we get

(
εn+1,W

)
+ r

(
∂εn+1

∂x
,
∂W
∂x

)
=

j∑
k=0

Nj,k
(
εk,W

)
− r (E∆t,W) . (11)

Now we begin the mathematical induction. For j = 0 in (11) and ε0 = 0, we have

(
ε1, v

)
+ r

(
∂ε1

∂x
,
∂W
∂x

)
= −r (E∆t,W) .

Taking W = ε1, we obtain ∥∥ε1
∥∥

1
≤ r ‖E∆t‖0 .

Using (6), we get the result ∥∥U(t1)− U1
∥∥

1
≤ C(∆t)2.

Now, we suppose that ∥∥∥U(tk)− Uk
∥∥∥

1
≤ C(∆t)2 , for k = 1, · · · , j. (12)
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We need the prove that (12) holds for k = j + 1.
Taking W = εj+1 in (11), yields

∥∥εj+1
∥∥2

1
≤

j∑
k=0

Nj,k.
∥∥∥εk∥∥∥

0
.
∥∥εj+1

∥∥
0

+ r ‖E∆t‖0 .
∥∥εj+1

∥∥
0

≤

(
j∑

k=0

Nj,kC(∆t)2 + C(∆t)2

)∥∥εj+1
∥∥

0

≤ C(∆t)2
∥∥εj+1

∥∥
1
.

Thus, we have ∥∥U(tj+1)− U j+1
∥∥

1
≤ C(∆t)2, (13)

and this completes the proof.

3 Space discretization: Finite element method

Let Sh denote a uniform partition of Ω which is given by

a = x0 < x1 < · · · < xm−1 < xm = b,

where m is a positive integer.

Let h = (b− a)/m = xi − xi−1 and Ωi = [xi−1, xi] for i = 1, · · · ,m. Define by χh the space
of piecewise polynomials of order n with n ∈ N on the mesh Sh,

χh = {W :W|Ωi ∈ Pn(Ωi),W ∈ C(Ω)} .

Let U j+1
h be the finite element solution at t = tj+1, then we have the full discrete scheme of

problem (1) for 0 < γ < 1 given by

(
U j+1
h ,Wh

)
+ r

(
∂U j+1

h

∂x
,
∂Wh

∂x

)
=

j∑
k=0

Nj,k
(
Ukh ,Wh

)
+ r

(
f j+1,Wh

)
. (14)

Since χh ⊂ H1
0 (Ω) similarity to Theorem (1), we have that (14) satisfies the proprieties of the

Lax-Milgram Lemma. Therefore, the existence and the uniqueness of the full discrete variational
form (14) is derived.

3.1 The error estimate

Theorem 3. Assume that problem (1) has a solution satisfying Ut ∈ L2(I,H2(Ω)))∩L∞(I,H2),
Utt ∈ L2(I, L2(Ω)) such that U0 ∈ H2 (Ω) and finite element solution (14) is convergent to the
solution of problem (1) on I as ∆t, h→ 0. Then, the approximation solution satisfies,∥∥∥U(tj+1)− U j+1

h

∥∥∥
1
≤ C

[
hn ‖U‖L∞(Hn+1(Ω)) + (∆t)2

]
.

Proof. To give an estimation of the error, we need first to discuss the error at t = tj+1 for

j = 0, 1, · · · , J − 1. Define ε̄j+1 = U(tj+1)− U j+1
h and for U j+1 ∈ χh. Define Φj+1 = U(tj+1)−

U j+1 and Ψj+1 = U j+1 − U j+1
h . So we get ε̄j+1 = Φj+1 + Ψj+1. The exact solution at t = tj+1

also satisfy,

(U(tj+1),Wh) + r

(
∂U(tj+1)

∂x
,
∂Wh

∂x

)
=

j∑
k=0

Nj,k (U(tk,Wh)

+ r
(
f j+1,Wh

)
− r (E∆t,Wh) . (15)
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Subtracting (14) from (15), we get

(
ε̄j+1,Wh

)
+ r

(
∂ε̄j+1

∂x
,
∂Wh

∂x

)
=

j∑
k=0

Nj,k
(
ε̄k,Wh

)
− r (E∆t,Wh) . (16)

Substituting ε̄j+1 and Wh by Φj+1 + Ψj+1 and Ψj+1 respectively into (16) yields

(
Ψj+1,Ψj+1

)
+ r

(
∂Ψj+1

∂x
,
∂Ψj+1

∂x

)
=

j∑
k=0

Nj,k
(
ε̄k,Ψj+1

)
−
(
Φj+1,Ψj+1

)
−r
(
∂Φj+1

∂x
,
∂Ψj+1

∂x

)
− r

(
E∆t,Ψ

j+1
)
.

Then, we have

∥∥Ψj+1
∥∥2

1
≤

j∑
k=0

Nj,k
∥∥∥ε̄k∥∥∥

0
.
∥∥Ψj+1

∥∥
0

+
∥∥Φj+1

∥∥
0
.
∥∥Ψj+1

∥∥
0

+ r
∥∥Φj+1

∥∥
1
.
∥∥Ψj+1

∥∥
1

+ r ‖E∆t‖0 .
∥∥Ψj+1

∥∥
0
.

Using the estimation∥∥Ψj+1
∥∥

0
≤
∥∥Ψj+1

∥∥
1
,
∥∥Φj+1

∥∥
0
≤ Chn+1 ‖U(tj)‖n+1 and

∥∥Φj+1
∥∥

1
≤ Chn ‖U(tj)‖n+1 ,

we obtain,

∥∥Ψj+1
∥∥

1
≤

j∑
k=0

Nj,k
∥∥∥ε̄k∥∥∥

0
+ hn+1 ‖U(tj)‖n+1 + rhn ‖U(tj)‖n+1 + r(∆t)2

≤
j∑

k=0

Nj,k
∥∥∥ε̄k∥∥∥

0
+ C

(
hn ‖U(tj)‖n+1 + (∆t)2

)
.

From the error definition ε̄j+1 = Φj+1 + Ψj+1 and the above analysis, one has∥∥ε̄j+1
∥∥

1
≤

∥∥Φj+1
∥∥

1
+
∥∥Ψj+1

∥∥
1

≤
j∑

k=0

Nj,k
∥∥∥ε̄k∥∥∥

0
+ C

(
hn ‖U(tj)‖n+1 + (∆t)2

)
+ Chn ‖U(tj)‖n+1

≤
j∑

k=0

Nj,k
∥∥∥ε̄k∥∥∥

0
+ C

(
hn ‖U(tj)‖n+1 + (∆t)2

)
.

Then, we have

∥∥ε̄j+1
∥∥

1
≤

j∑
k=0

Nj,k
∥∥∥ε̄k∥∥∥

0
+ C

(
hn ‖U‖L∞(Hn+1(Ω)) + (∆t)2

)
.

Finally, we use inductions to obtain error estimates, in a similar way as in Theorem 2, and
these complete the proof.

4 Numerical example

Here we carry out a numerical example to illustrate the effectiveness of our numerical method,
for that, let Sh be the uniform classical partition of [a, b] and we choose χh to be the space of
all piecewise linear functions on Sh which means n = 1. Hence, χh can be expressed by

χh = {W :W|Ωi ∈ P1(Ωi),W ∈ C(Ω)} ,
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where P1(Ωi) is the space of linear polynomial on Ωi.
Then, we can associate the test function of space χh by usual basis hat functions.

CF
0 D

γ
t U(x, t)− ∂2U(x, t)

∂x2
= f(x, t), 0 < γ < 1, [0, 1]× [0, 1]

U(x, 0) = 0 , x ∈ [0, 1]
U(0, t) = 0, U(1, t) = t , t ∈ [0, 1] ,

(17)

where f(x, t) =
x3

γ

1− e

[ −γt
1− γ

]−6tx. Thus, here the exact solution is done by U(x, t) = tx3.

Tables 1 and 2 show the approximation errors and the convergence order of the finite element
scheme. In Table 1, we set h = ∆t to ensure that the space discretization error is the same as
the time error. In Table 2, we take ∆t = 0.001, a small value enough here to check the space
error and the convergence order. So, we can also check that the numerical convergence order,
approaching 2, aligns consistently with the theoretical analysis.

Table 1: The error estimates and convergence order for α and h = ∆t

h = ∆t α = 0.3 α = 0.6 α = 0.9

error order error order error order

1/10 4.1179E − 4 9.4884E − 4 2.0152E − 3
1/20 1.0810E − 4 1.93 2.751E − 4 1.79 9.8783E − 4 1.03
1/40 2.7711E − 5 1.96 7.4226E − 5 1.89 3.5160E − 4 1.49
1/80 7.0161E − 6 1.98 1.9287E − 5 1.94 1.0521E − 4 1.74
1/160 1.7652E − 6 2.00 4.9165E − 6 1.97 2.8795E − 5 1.87

Table 2: The error estimates and convergence order for α and ∆t = 0.001

h = ∆t α = 0.3 α = 0.6 α = 0.9

error order error order error order

1/10 4.4309E − 4 1.2032E − 3 7.3097E − 3
1/20 1.1223E − 4 1.98 3.1035E − 4 1.95 1.9082E − 3 1.94
1/40 2.8232E − 5 1.99 7.8795E − 5 1.98 4.8731E − 4 1.97
1/80 7.0794E − 6 2.00 1.9851E − 5 1.99 1.2312E − 4 1.98
1/160 1.7725E − 6 2.00 4.9817E − 6 1.99 3.0943E − 5 1.99
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Figure 1: Convergence errors for different γ and σ

Figure 2: Convergence orders for different γ and σ

5 Conclusion

Employing the Caputo and Fabrizio fractional derivative, which addresses both temporal and
spatial variables. We proposed in this work to use the finite element method for solving any
fractional time partial differential equations based on the fractional order derivative. Although
we discretized the fractional time derivative by using the classical finite difference scheme, which
is a second-order accuracy. We applied the finite element method for the spatial derivative
to approximate the space derivative and obtain directly the full discretization scheme with
essentially convergence order of O((∆t)2+hn+1). Our method proved effective through numerical
testing.
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